

Savitribai Phule Pune University

(Formerly University of Pune)

Two Year Degree Program in Environmental Sciences

(Faculty of Science & Technology)

Revised Syllabi for

M.Sc. (Environmental Sciences) Part-I

(For Colleges Affiliated to Savitribai Phule Pune University)

Choice Based Credit System Syllabus To be implemented from Academic Year 2019-2020

Course Code of Choice based Credit System for Postgraduate Science Programme

Sem	Course Type	Course	Course Name	Credits
		Code		
1	Core Compulsory	EVSUT-111	Environmental Biology & Biodiversity	4
	Theory Paper	EVSUT-112	Environmental Physics & Chemistry	4
		EVSUT-113	Earth, Ocean and & Atmospheric Sciences	4
		EVSUT-114	Environmental Statistics	4
	Core Compulsory	EVSUP-115	Environmental Sciences Practical Paper	4
	Practical Paper			
2	Core Compulsory	EVSUT-121	Water & Soil Pollution: Management & Mitigation	4
	Theory Paper	EVSUT-122	Air, Noise & Radiation Pollution: Management &	4
			Mitigation	
		EVSUT-123	Environmental Law, Ethics & Policy	4
		EVSUT-124	Water & Wastewater Technology	4
	Core Compulsory	EVSUP-125	Environmental Sciences Practical Paper	4
	Practical Paper			

Detailed Syllabus

SEMESTER – 1 (COMPULSORY)

EVSUT-	ENVIRONMENTAL BIOLOGY & BIODIVERSITY (4 CREDITS)	Lectures
111		
1.	Environmental Biology: Concepts and Scope:	4
	 Concept of Ecosystem; Biosphere as an ecosystem; its ecological 	
	processes and life support systems.	
	 Ecotone, and Role of biological processes in remedial measures and 	
	restoration.	
2.	a) Fundamental Concepts of Ecology.	15
	• Ecology: Definition, development and scope. Ecology as an experimental	
	science	
	 Ecosystems: concept, components and functioning. 	
	• Energy Fixation (photosynthesis and chemosynthesis) and energy flow	
	through food chains (grazing and detrital) and webs (include Y shaped	
	energy flow model).	
	 Ecological efficiencies and pyramids. Trophic levels 	
	• Influence of environmental factors (including temperature, light, moisture,	
	soil, nutrients) on organisms and their adaptations in response to them.	
	b) Ecology of Populations And Communities.	
	(i) Population Ecology:	
	 Factors determining the abundance and distribution of a species 	
	• Factors leading to the commonness, rarity and vulnerability of extinction	
	of a species.	
	Population Dynamics: Patterns of survival, age distribution, dispersal and	
	rates of change. Attributes of K- selected and r-selected species,	
	Population Growth.	
	(ii) Community Ecology:	
	Competition, Exploitation (including herbivore, predation, parasitism),	
	Mutualism (including commensalism, cooperation, symbiosis)	
	 Food webs and concepts of niche and keystone species. 	
	• Nutrient cycling and retention: Biogeochemical cycles (Carbon, Nitrogen,	
	Phosphorus), limiting factors and their tolerance	

	 Succession, development, climax and stability of ecosystems 			
	(EXCLUDING Climax Theories),			
	 Cake and other ecological models, model of successions 			
3.	Introduction To Plant And Animal Behaviour:			
	 Ethology and socio-biology: General definition and concept 			
	Types of behaviour			
	Feeding Behavior: Herbivores, Carnivores, Parasites, Saprophytes,			
	Response of prey / plants (deterrence, defence, reward).			
	Animal Architecture and use of tools			
	Circadian and other rhythms.			
	 Migration, orientation, navigation, and homing. 			
	Communication (including visual, olfactory, tactile, auditory, chemical)			
	Aggression, Territoriality, Altruism.			
	Reproductive Behaviour: Courtship, Mating, Parental care, breeding			
	systems.			
	 Instinct and Learning: Genotype and phenotype behaviour. 			
	 Insect and Vertebrate Societies, Associations 			
4.	Terrestrial and aquatic Biomes	10		
	Climatic and edaphic factors of terrestrial biomes. Heinrich Walter's			
	Biome Climate Diagrams			
	Classification of land biomes with their soil, climate and vegetation			
	characteristics. Their natural history, wildlife, geography and human			
	influences.			
	 Mountain Biome: Replication of latitudinal changes in the altitudes of 			
	high mountains.			
	• Terrestrial biomes, ecosystem diversity, forest and vegetation types in			
	India.			
	Challenges and adaptations of life in aquatic biomes (freshwater: still and			
	flowing, marine).			
	 Freshwater Biomes (Rivers, streams, lakes, ponds) 			
	 Marine Biomes (including mangroves, coral islands, kelp forests, 			
	saltwater marshes, seashores, estuaries) and their natural history			
	Wetlands – definitions, types, ecological functions and resources.			
5.	Environmental Microbial ecology:	8		
	Classification of microbes and their metabolism and ecology			
	 Micro-organisms and their association with man, animals and plants. 			

	Role of microbes in bio-remedial processes, ecological restoration and	
	other environmental applications	
	• Environmental factors affecting microbes, their cultivation and growth.	
	• Concept of bioindicators, bioindicators as plants, animals, bioindicators	
	in manmade environment, role of bioindicator in pollution control.	
	• Fundamentals of microbial nitrogen fixation and other pathways in terms	
	of enzymology.	
6.	Concept of Carrying Capacity	6
	Biotic and abiotic components of environment, concept of sustainability and	
	carrying capacity, tragedy of commons, human population and food, water	
	and energy security, present status of environment and future scenarios.	
7	Introduction to Biodiversity	5
	Biodiversity: An inventory of Global and Indian biological resources and their	
	present and potential uses; Values of biodiversity; threats to biodiversity;	
	Strategy for conservation of bio-resources.	
	Reference Books:	
	1. Environmental Science - Arms Karen	
	2. Principles of Environmental Science-Watt, K. E. F. (1973) McGraw-Hill	
	Book Company.	
	3. Environmental Science - Noble, B .J. Kormandy, E.J. (1981). The way	
	world works, Prentice-Hall Inc., N .J.	
	4. Environmental Science-Turk A., Turk J. Wittes J.T. and Wittes, R.E.	
	5. Environmental Issues: Measuring, Analyzing, Evaluating, Abel, Daniel C.	
	McConnell, Robert L. Abel, Daniel C. Edi. 2 Prentice Hall Publication	
	6. Chaudhuri AB and Sarkar DD (2003) Megadiversity Conservation, Flora,	
	Fauna and Medicinal Plants of India's Hotspots. Daya Publishing House, New Delhi	
	7 Gary K Meffe and Ronald Carroll C (1994) Principles of Conservation	
	Biology Sinauer Associates Inc. Massachusetts	
	8 Groombridge B (Ed.) (1992) Global Biodiversity Status of the Earths Living	
	Resources, Chapman & Hall, London.	
	9. IUCN (1992) Global Biodiversity and Strategy.	
	10. Sharma PD (2000) Ecology and Environment. Rastogi Publications,	
	Meerut, India.	
	11. Singh MP, Singh BS and Soma S. Dev (2004) Conservation of	
	Biodiversity andNatural Resources. Daya Publishing House, New Delhi.	
	12. Virchow D (1998) Conservation and Genetic Resources, Springer-Verlag,	

Berlin.	
13. Singh B, (1992). Social Forestry for Rural Development, Anmol Publishers,	
New Delhi	
14. Raymond F Dasmann(1984), Environmental Conservation, John Wiley.	
15. Kato, M. The Biology of Biodiversity, (1999), Springer Verlag, Tokyo.	
16. Kotwal, P.C. and S. Banerjee(2002) Biodiversity Conservation - In	
Managed forest andProtected areas. Agrobios, India.	
17. Krishnamurthy, K.V. (2003)An Advanced Textbook on Biodiversity -	
Principles and Practice. Oxford and IBH Publishing, New Delhi.	

EVSUT-	ENVIRONMENTAL PHYSICS AND CHEMISTRY (4 CREDITS)	Lectures
112		
1	Estimation of various elements at major, minor, trace, rare level	15
	concentrations: choice of a technique, principle, merits and demerits of	
	the techniques - neutron activation analysis, isotope dilution analysis,	
	colorimetry, atomic absorption, spectroscopy, ICPAES, chromatography,	
	HPLC, ion exchange chromatography, X-ray fluorescence, X-ray	
	diffraction, Flame photometry, Polarography UV Spectrophotometer,	
	Mass Spectrometry	
2	Stoichiometry, Gibb's energy, Chemical Potential, Chemical equilibria,	10
	acid base reactions, solubility product, solubility of gases in water, the	
	carbonate system, unsaturated and saturated hydrocarbon,	
	radionuclides, Chemical bonding, chemical reactions and equations,	
	Organic functional groups, classes of organic compounds. Free radical	
	reactions, catalytic processes. Elemental cycles (C, H, N, S, O, P) and	
	their environmental significance. Reversible and irreversible reactions	
	of water, Cations and anions in water and their sources, Mass Balancing,	
	concepts of DO, BOD, COD, sedimentation, coagulation, filtration, redox	
	potential.	
3	Fluids: Pressure, buoyancy, fluid flow, viscosity, surface tension.	15
	Applications to hydraulics, biology, biophysics, atmospheric physics,	
	aerodynamics	
	Waves and oscillations: reflection, refraction, superposition,	
	resonance, energy transport, absorption, Doppler effect. Applications to	
	water waves, acoustics, seismology	
	Optics: Geometrical optics including dispersion, lenses, mirrors,	
	interference, diffraction, polarisation. Applications to microscopy,	
	imaging, vision, crystallography	
	Quantum physics: interaction of light with matter, x- rays. Application to	
	atomic physics, lasers, and spectroscopy	
4	Nuclear physics: Atomic nucleus, radioactive decay, half-life, ionising	20
	radiation, nuclear fission and fusion. Application to nuclear energy,	
	radiation safety, nucleo-genesis, carbon dating. Effects of radiation on	
	living tissue, background radiation, radon; units for radiation exposure;	
	applications of nuclear technology, nuclear medicine, contaminant	

tracing, ion beam analysis
Thermodynamics: Carnot cycle, refrigerators, heat engines, throttling
process; Helmholtz and Gibbs Free energies, and phase
transformations. Heat Energy And Kinetic Theory Heat and
Temperature. Internal Energy, Specific Heat. Ideal gas Equation. Kinetic
theory interpretation of pressure and temperature. Work, heat, and laws
of thermodynamics. Adiabatic lapse rate. Radiant energy.
Optics: Fourier optics, Fourier transforms in 1 and 2D, Dirac delta
function and comb, discrete Fourier transforms and the sampling
theorem, convolution, cross and autocorrelation. Fresnel and Fraunhofer
diffraction, Polarized light including production and control of
polarization.
Reference Books
1. Environmental Chemistry by A. K. De
2. Destruction of hazardous chemicals- G.Lunn, E.B.Sandome
3. Hazardous substances in chemical lab-G.D.MuMivir
4. Essentials of Nuclear Chemistry, H. J Arnikar, Wiley Eastern Limited,
4 th Edition.(1995)

EVSUT-	EARTH, OCEAN & ATMOSPHERIC SCIENCES (4 Credits)	
113		Lectures
1.	Earth: Origin, Structure, Dynamics & Composition	9
	• Origin: Origin of Earth & its spheres (Lithosphere, Biosphere,	
	Hydrosphere, Atmosphere)	
	• Structure: Internal Structure of Earth - Core, Mantle and Crust;	
	Thermal, Magnetic & Gravitation Fields of the Earth	
	• Dynamics: Concepts of Plate Tectonics & Sea Floor Spreading,	
	Mountain building (folding and faulting), Earthquakes, Volcanism	
	Composition: Igneous, Sedimentary & Metamorphic Rocks;	
	Processes and formation; Characteristics of major Rocks and	
	Minerals.	
2.	SURFACE PROCESSES & LANDFORMS	6
	• Processes and agents of weathering, erosion, transportation and	
	deposition; Cycles of erosion- Davis and Penck Models	
	 Mass-wasting; 	
	• Erosional and depositional landforms: Glacial, Aeolian, Fluvial,	
	Coastal, shallow marine and deep marine.	

	Concept of Engineering & Urban Geology		
3.	Soil: Genesis of Soil; Soil Profile; Soil texture, structure; Bio-, Physico-,	4	
	Chemical properties of soil; Soil Classification; Soil types w.r.t. genesis;		
	Fertility; Lateritization; Land use and Land capability classification;		
	Water-logging, salinization, desertification and degradation of soil.		
4.	Hydrology:	8	
	 Concept of Hydrology & Hydrogeology 		
	Hydrological Cycle (Precipitation, Infiltration, Surface Run off,		
	Evapo-transpiration)		
	Surface & Groundwater Resources;		
	 Vertical distribution of groundwater: Types of Aquifers & Springs; 		
	Hydrological properties of rocks: Darcy's Law, Storativity, Hydraulic		
	Conductivity, Transmissivity,		
	 Concept of Drainage Basin and Watershed. 		
5.	Ocean Science:	8	
	Ocean Basins and Physical structure of ocean floor; Oceanic		
	environments		
	Vertical stratification of water column (Temperature, Pressure,		
	Salinity, pH, Oxygen, CO2, Nutrients)		
	Waves, Tides, Currents, Tsunamis; Importance of winds & Hadley's		
	Cell; Corriolis Effect; Geostrophic Currents; Ekman Spiral; Upwelling		
	& Productivity; Surface; Thermohaline and Bottom water circulation		
6.	Earth Resources: Occurrence, exploitation and environmental impacts	5	
	Coal, Hydrocarbons and mineral resources.		
7.	Atmosphere:	20	
	Evolution, Composition and Structure; Elements of weather and		
	climate; Weather Parameters (temperature, wind pressure, relative		
	humidity, rainfall); Climatology of weather parameters; Long and		
	Short term climatic effects		
	 Insolation; The energy system and its balance; Flux of solar system 		
	in the biosphere; Earth's radiation budget; Net radiation and		
	latitudinal heat balance; Green House Effect and Human influence		
	on radiation balance.		
	Atmospheric pressure, measurements & Distribution; Pressure &		
	Wind Belts; local winds; Geostrophic & gradient winds; Air masses,		
	Classification and modifications of air masses. Fronts, Classification		
	of fronts.		

Atmospheric moisture- Condensation; Forms of precipitation; Cloud	
Classification; Indian Monsoon; Inter-tropical Convergence Zone	
(ITCZ);	
Walker Circulation: El Nino- La Nina	
Atmospheric Stability & Instability; Dry and moist adiabatic lapse	
rate;	
Environmental lapse rate, plume behaviour	
Environmental Meteorology - Atmospheric chemical transport	
models; emission inventory- aerosol and gas pollutants; National Air	
Quality Standards and Indices; Dry and wet deposition fluxes of gas	
and aerosol pollutants; Intercontinental and hemispheric transport of	
air pollutants	
Reference Books	
1. The Earth System (3rd Edition) 3rd Edition- Lee R. Kump, James	
F. Kasting, Robert G. Crane	
2. Holmes' Principles of Physical Geology 4th ed. 1993 Edition-	
Arthur Holmes (Ed) P. Mc L. D. Duff	
3. Introduction to Physical Geology 1998. G.R. Thompson, & J. Turk	
4. Planet Earth: Cosmology, Geology, and the Evolution of Life and	
Environment- Cesare Emiliani	
5. Environmental Geology – K.S. Valdiya	
6. Plate Tectonics & Crustal Evolution- Kent. C. Condie, 1997	
7. Tectonic Geomorphology – D. Burrbank & R. S. Anderson, 2012	
8. Mineralogy: Berry Mason, Dietrich	
9. Rock Forming Minerals: Deer, Howie, Zussman	
10. A.D. Howward and I Remson : Geology in Environmental Planning	
11. Soroie: Geology for Engineers.	
12. Rise and Wateson: Elements of Engineering Geology.	
13. Todd, D.K.: Groundwater Hydrology.	
14. Davis S.N. and Dewiest R.J.M.: Hydrogeology.	
15. Economic Geology: Economic Mineral Deposits 2nd	
Edn. Umeshwar Prasad	
16. Economic Mineral Deposits 3rd Edition- Alan M. Bateman; Mead L.	
Jensen	
17. Textbook of Soil Science- T.D. Biswas and S.K. Mukherjee	
18. The Nature and Properties of Soils, 14th Edition Nyle C., Brady	
and Ray R. Weil	

EVSUT-	ENVIRONMENTAL STATISTICS (4 Credits)	
114		
1.	Foundation of environmental statistics –	6
	Nature of environmental data: Survey based (empirical) and	
	experimental data. Concepts of population and sample - Random	
	variable and parameters of interest. Concepts of statistical inference,	
	Simple random sampling for selection of sampling units for making	
	observations.	
2.	Univariate data –	8
	Frequency distribution and their properties (including Skewness and	
	Kurtosis), Histogram, Frequency Curve and Ogive Curves. Measure of	
	central tendancy: Mean, Median and Mode. Measure of Dispersion:	
	Range, Variance, standard deviation and co-efficient of variation.	
	Presentation of data: Summery statistics and graphical methods.	
3	Bivariate data -	8
	Obtaining bivariate data by measuring two variables on a single	
	sampling unit. Summary statistics for bivariate data: Mean, standard	
	deviation and covariance, correlation coefficient. Scatter plot and its	
	interpretation.	
4	Multivariate data –	10
	Multivariate analysis, Regression Multivariate Analysis, PCA, Q-mode	
	and R-Mode Factor analysis, Time-series data analysis, Moving	
	averages, Wavelet analysis / Spectral analysis; Introduction to	
	MATLAB	
5	Tests of Significance-	5
	Chi- squared test: goodness of fit. Independence of attributes, T and F	
	tests for significance	
6	Statistical models –	12
	Distribution models: Normal distribution and its properties. Fitting of	
	normal distribution. Calculation probabilities of different events for	
	normal distribution. Standardization of data and approximation by	
	normal distribution.	
	Prediction models: linear and non-linear regression models, fitting a	
	regression line and parabolic curve, estimating regression coefficients.	
	Calculation of fitted values and residuals.	

7	Statistical models in environmental science-	5
	Population growth model, Catch model.	
8	Statistical Quality Control (SQC) Technique-	6
	Meaning of Quality/SQC, Control Chart for variables (X-Bar and R-	
	Charts)	
	Reference books:	
	1. Barnett Vic (2004) Environmental Statistics: methods and	
	applications.	
	2. Ott, Wayne R. (1995) Environmental Statistics and data analysis.	
	3. Zar, Jerrold H. (1997) Biostatistical Analysis. Prentice Hall (India)	
	4. Nychka, Douglas and Piegorsch Walter W (1998) Case studies in	
	environmental Statistics.	
	5. Manly Bryan F.J. (2001) Statistics for Environmental Science and	
	Management.	
	6. Walpole R. and Myem R. (1993) Statistics for engineers and	
	scientists.	

EVSUT	PRACTICALS RELATED TO EVSC- 101, 102, 103 & 104 (4 Credits)	
115		
	EVSUT-111 FUNDAMENTALS OF ENVIRONMENTAL BIOLOGY &	
	BIODIVERSITY	
	1. Determining the rate of photosynthesis in an aquatic plant (hydrilla or elodea)	
	2. Estimation of chlorophyll content from given plant leaves	
	3. Vegetation studies by line and belt and quadrates methods	
	4. To study wetland bird diversity	
	5. Phytoplankton and zooplankton analysis from freshwater samples	
	6. Estimation of Productivity of lake	
	7. Preparation of media for microbial culture, Isolation and culturing of microbes	
	from soil / water samples, Gram Staining.	
	8. Bacterial growth curve	
	9. Enzyme analysis from soil samples	
	EVSUT- 112 FUNDAMENTALS OF ENVIRONMENTAL PHYSICS AND	
	CHEMISTRY	
	1. Preparation of samples and analysis using Chromatography	
	2. Determination of Nitrogen, Phosphorus, Sulphur	
	3. Estimation of halides in water samples by Potentiometry	
	4. Preparation of samples and analysis using titration	
	5. Preparation of samples and analysis using Flame photometer	
	6. Preparation of samples and analysis using Spectrophotometer / UV	
	Spectrophotometer	
	EVSUT – 113 EARTH, OCEAN & ATMOSPHERIC SCIENCES	
	1. Physical properties of minerals in hand specimen:	
	Quartz, Calcite, Aragonite, Orthoclase, Mica, Haematite, Kyanite,	
	Hornblende, Chlorite, Baryte, Halite, Gypsum, Galena, Pyrite, Anhydrite,	
	Apatite, Fluorite, Asbestos, Staurolite.	
	2. Physical properties of rocks in hand specimen	
	Igneous: Granite, Rhyolite, Basalt, Gabbro, Diorite, Dunite, Obsidian,	
	Sedimentary: Conglomerate, Sandstone, Limestone, Shale, Laterite	
	Metamorphic: Marble, Slate, Schist, Gneiss, BHQ	
	3. Textural analysis of soil & Ternary Plots	
	4. Slope analysis and aspect maps	
	5. Drainage analysis	

6. Estimations of dry and wet deposition fluxes of gases and aerosol pollutants
7. Exercises based on adiabatic lapse rates
8. Climatic maps and diagrams – circular, graph, wind roses
9. Study of distribution of surface oceanic currents and global conveyor belt
10. Study of distribution of different tectonic plates and boundaries
EVSUT – 114 Environmental Statistics Practicals
1. Grouping of data and preparation of frequency distribution. Histogram and
frequency polygon
2. Calculating mean, median and mode for grouped and ungrouped data
3. Calculating variance, standard deviation and coefficient of variation for
grouped and
4. ungrouped data
5. Fitting simple linear regression. Plotting scatter diagram and regression line
6. Computing correlation coefficient and testing its significance for grouped and
ungrouped data
7. Comparison between means of two independent samples. Paired t-test
8. Analysis of variance: one way classification
9. Analysis of variance: two- way classification
10. Multivariate Analysis : STATISTICA/ANOVA/SPSS
11. Fitting statistical model of air pollution to data

Semester 2 (Compulsory)

EVSUT-	Water and Soil Pollution: Management & Mitigation (4 Credits)	Lectur
121		es
1.	Freshwater Pollution	
	Types and sources, Inorganic and organic pollutants responsible for	16
	water pollution: Biological pollutants; Pesticides; Radioactive pollutants,	
	etc. effluent standards, Drinking water standards, Characteristics of	
	Domestic waste, Characteristics of Agricultural waste. Consequences of	
	water pollution: Effects on health, on biosphere and on economy.	
	Remedial measures of Freshwater pollution.	
	• Case studies based on freshwater remediation using traditional and	
	modern technology.	
2.	Ground water Pollution:	
	Sources, groundwater contamination zones, groundwater remediation	16
	<i>in situ</i> and <i>ex situ</i> techniques;	
	• bioremediation strategies of groundwater using bio-venting, bio-	
	sparging, bio-slurpping, permeable reactive barriers;	
	 groundwater monitoring using Piezometer, slug and pumping tests; 	
	• Darcy's Law for estimation of hydraulic parameters, Numerical	
	simulation for aquifer yield prediction, Artificial recharge and induced	
	infiltration, Land subsidence;	
	Coastal aquifers & Sea water intrusion	
	Environmental regulatory bodies preventing groundwater pollution;	
	• Case studies based insight in to groundwater remediation techniques.	
3.	Marine Water Pollution:	12
	 Sources, types and consequences; 	
	Ballast water pollution	
	• pollution due to off shore drilling, deep mining and oil extraction and	
	other sources; prevention methods, control measures using	
	bioremediation (bio-surfactants, microcosms), physical (booms,	
	skimmers, absorbents etc) and chemical methods (dispersants,	
	detergents etc).	
	• Case studies based analysis of marine water pollution and prevention	
	strategies.	
	Soil Pollution and Control	

 Types, Effects and sources and consequences. Mechanism of interaction of waste with soil. Transport processes — biological process-microbial transformation of heavy metals. Specifications for disposal of sewage and effluent on land for irrigation and ground water recharge. Methodology of wastewater disposal on land in India. Impacts of usage of land for solid waste disposal both municipal solid waste and industrial solid wastes (fly ash from thermal power station, lime sludge from pulp and paper mills). Disposal of hazardous solid waste (heavy metals, toxic organic compounds) on land and its impact on soil pollution. Deterioration of soil due to mining activities Case study of restoration of land due to a disposal of fly ash, dumping overburden and tailing in iron ore extraction. 	16
Reference Books: 1. Groundwater In the Environment: An Introduction, Paul L Younger 2014, ISBN: 978-265-4636-7	
 Groundwater Hydrology, Bhagu R Chahar, McGraw Hill Education Environmental Chemistry, B. K. Sharma Environmental Chemistry and Pollution Control, S. S. Dara Environmental Pollution, N. Manivasakam Environmental Chemistry, Samir K. Banerji 	

EVSUT-	ENVIRONMENTAL POLLUTION II: AIR, NOISE AND RADIATION (4	Lectures
122	CREDITS)	
1.	Air Pollution: Causes and Effects:	4
	Definition, Composition of air, Classification of air pollution, Sources,	
	Effect of gaseous and particulate pollutants on animals, plant and	
	human health, Economic effects of air pollutants, Vehicular Pollution,	
	Industrial Pollution.	
2.	Air Pollution Meteorology& Chemistry	8
	Wind as a factor, Temperature structure, The role of atmospheric	
	stability, Dispersion of air pollutants.	
	Chemical Principles and Troposphere and Stratospheric Ozone	
	Chemistry: Ozone formation & destruction, Polar Stratospheric Clouds	
	(PSPs).	
3.	Air Quality Analysis	8
	Air monitoring instruments and techniques: SOX, NOX, O3, C6H6, Pb,	
	CO, Particulate Matters.	
4.	Air Pollution Control Technology :	8
	Equipment's and Basic Operating Principle; Control of air pollution by	
	fuel selection, principle and working of – cyclones, scrubbers, settling	
	chambers and electrostatic precipitators. Control of gaseous pollutants	
	 absorption, adsorption, condensation, vapor incineration. Equipments 	
	for control of air pollution – Cyclones, Wet scrubbers, Electrostatic	
	precipitators, fabric filters, absorption.	
5.	Air Quality Management : Policy and Institutional Framework	8
	Ambient Air Protection Policy, Air Quality Norms, Regulation of	
	Emissions from Stationary & Non-Stationary Sources. Public Informing	
	and Participation in Decision Making Process, Planning and	
	Implementation of Ambient Air Protection Measures. Strategies for Air	
	Pollution Control - Control of air pollution by fuel selection and	
	utilization, by process modification or equipment, by site selection and	
	zoning.	
6.	Air Pollution Episodes: Case Studies	2
7.	Noise Pollution & Control	6
	Introduction to noise and vibrations, physics of sound and hearing,	
	Noise Pollution, sources and effects.	

	Noise control at source: Source path receiver concept, control by	
	design, control by redress	
	Noise control in the transmission path: Accoustical separation, physical	
	barriers, Isolators and Silencers	
	Protecting the receiver: personal protection device	
8.	Noise Monitoring and Impact Criteria	6
	Noise measuring techniques, national standard for noise, noise	
	monitoring methods, A-weighted Sound Level: The Basic Noise Unit;	
	Maximum Sound Level (Lmax) During a Single Noise Event; Sound	
	Exposure Level (SEL):Exposure from a Single Noise Event Hourly	
	Equivalent Sound Level(Leq (h)); Day-Night Sound Level (Ldn): 24-	
	Hour Exposure from All Events; A Noise-Exposure Analogy for Leq and	
	Ldn	
	Investigation and assessment of impact of noise, Considerations in	
	Applying the Noise Impact Criteria; Mitigation Policy Consideration;	
	Determining the Need for Noise Mitigation.	
9.	Radiation Pollution	10
	Radioactivity – types and measurement. Detection of nuclear radiations	
	- G. M. counter, scintillation counter, semi-conductor detector.	
	Radiation hazards and safety – natural and manmade. Types of	
	radiations. Internal and external radiation hazards, safe handling	
	methods, personal dosimeter, reactor safety. Interaction of radiation	
	with matter. Units of measurements, half-life period, radiation dose	
	measurement. Biological effects and health hazards associated with	
	radiation. Interaction of radiations with biological cells, somatic and	
	genetic effects. Classification of radio-active wastes - gas, solid, liquid.	
	Control measures - treatment and disposal of radio-active waste,	
	generation of waste from various sources. ICRP recommendations.	
	AERB classification, maximum permissible dose. Three miles and	
	Chernobyl accidents.	
	Reference Books	
	1. Fundamentals of Air Pollution – Daniel A. Vallero	
	2. Air Pollution: Health and Environmental Impacts – L.T Molina &	
	B.R Gurjar	
	3. Advanced Air and Noise pollution Control – L.K Wang & N.C	
	Pereira	
	4. Textbook of Noise Pollution & Its Control – S.C. Bhatia	

5. Environmental Chemistry - A.K. De	
6. Environmental Chemistry – B.K. Sharma	

EVSUT-	ENVIRONMENTAL LEGISLATION, ETHICS AND POLICY (4	Lectures
123	CREDITS)	
1.	Introduction to Law and Policy- basic concept of Law and Policy	4
	(Importance and difference)	
2.	International Conferences impacting Indian legal system such as	8
	Stockholm conference, Rio conference, Rio+5, Rio+10.	
3.	Environmental Policies in the Indian Constitution - Role of constitution	6
	in environment protection, Fundamental rights and duties, Article 48A,	
	51A (g), 58A, etc.	
4.	Environmental Laws in India	14
	Water Act, 1974	
	• Air Act, 1981	
	 Indian Forest Act, 1927/1982 	
	• EPA, 1986	
	The Wildlife Act, 1972	
	The Biological Diversity Act, 2002	
	Others	
5.	Rules and Regulations (As amended)	14
	Hazardous Waste Rules	
	Solid Waste Management Rule	
	Biomedical Waste Rules	
	Batteries Rules	
	E- waste rules	
	 Construction and Demolition waste Rules 	
	 Concept of Eco sensitive zones, Coastal Regulation Zone 	
	Others	
6.	National Environmental Policy, Ethical dilemma, Issues of Sustainable	6
	Development	
7.	International Environmental Laws and Policies	10
	UNFCCC, Paris climate accord or Paris climate agreement 2015	
	Kyoto Protocol	
	Convention on Biodiversity	

International Solar Alliance
• CITES
Ramsar Convention
Basel Convention
• MARPOL
Cartagena Protocol on Bio-safety
AGENDA 21
Others
Reference Books:
1. T S Doabia. 2017. Environmental and Pollution Laws In India. 3rd
Edition. Publisher: Lexis Nexis
2. P. Leelakrishnan. 2016. Environmental Law in India. 4th edition.
Publisher: Lexis Nexis.
3. S. K. Mohanty. 2009. Environment and Pollution Laws. Publisher:
Universal.
4. P. Leelakrishnan. 2006. Environmental Law Case Book. 2nd edition.
Publisher: Lexis Nexis.
5. Divan Shyam and Rosencranz Armin. 2002. Environmental Law and
Policy in India: Cases, Material & Statutes. Publisher: Oxford.

EVSUT-	WATER & WASTE WATER TECHNOLOGY (4 CREDITS)	Lectures
124		
1	Quantity of water - Water Requirements for domestic consumption.	6
	Population forecasting by the following method; Demographic method,	
	Arithmetical progression method, Geometrical progression method,	
	Logistic methods, Graphical projection method, Final prediction. Variation	
	in quantity of water and waste water, Factors affecting rate of demand.	
	Quality of water required for – Domestic, Institutional (Schools, Hostels,	
	Hospitals), Fire fighting, Commercial (Shopping complex, Hotels,	
	Restaurant), Industrial (Dairy, Sugar, Pulp and Paper, etc.). Specific	
	requirement at pilgrimage place and recreation activities	
	Quality parameters for water analysis, methods for analysis	
2	Impact of future growth and development and change in quality of life on	5
	water requirements. Need of water quality standards for domestic &	
	industrial purpose. Specifications for drinking water (physical, chemical &	
	bacteriological) by Bureau of Indian Standards & World Health	
	Organization. Packaged drinking water.	
3	Water Treatment – Principle, Application & Designing of following Unit	10
	Operation in water treatment.	
	a. Collection & pumping; b. Aeration; c. Flocculation; d. Sedimentation; e.	
	Filtration; f. Disinfection; g. water softening	
4	Advanced treatment methods e.g.	6
	a. Demineralization; b. Ultra filtration; c. Reverse osmosis; d. Color &	
	odor removal by activated carbon; e. Iron removal; f. Nitrification and	
	denitrification	
	Selection of appropriate unit operations for the treatment and flow chart of	
	water treatment plant	
5	Specifications of treated wastewater for disposal into surface water, on	4
	land & in marine waters after treatment.	
	Self-purification of water bodies	
6	Wastewater technology – (Physical, Chemical and Biological Treatment),	4
	different models of aerobic and anaerobic digestion by combination of	
	attached & suspended growth	
	Impact of Future growth & development & change in quality of life on	
	sewage quality & quantity.	

	Role of microorganisms, Kinds of Microorganisms, Pathogenic microbes,	
	indicator microbes, enumeration of microbes, Coliform bacteria as	
	indicator organisms, Tests for the coliform group (MPN Method), growth	
	kinetics.	
	Water borne diseases, Importance of public health perspectives,	
	socioeconomic impacts, Types of waterborne diseases (Protozoan, Algal,	
	Fungal, Bacterial, and Viral diseases), prophylactic measures	
7	Wastewater engineering - Primary, secondary and Tertiary treatment	15
	process. Principle and designing of following Unit Operations in waste	
	water treatment:	
	Collection system - Methods of collection, conservancy systems,	
	collection system, water carriage system, sewerage system.	
	Screen chamber, Grit chamber, Oil & grease removal, Aeration and	
	sedimentation, Stabilization pond, Aerated lagoon, Activated sludge	
	process, Trickling filter, Rotating biological contactors	
	Anaerobic digestion processes , fluidized bed reactor, UASB	
	Treatment and Disposal of sludge (composting, sludge cakes, sludge	
	digestion, energy recovery)	
	Special treatments like septic tanks, soak pits.	
9	Industrial Wastewater-Selection of appropriate unit operations for the	5
	treatment and flow chart of wastewater treatment plant for	
	a. Dairy; b. Pulp & Paper; c. Galvanizing, etc.	
	Reference Books:	
	1. Waste water engineering – Metcalf & Eddy	
	2. Elements of Environmental Engineering –K.N. Duggal	
	3. Water Supply and Sanitary Engineering –G.S.Birdie and J.S.Birdie	
	4. Water Supply Engineering –Dr. P.N.Modi	
	5. Water Supply and Wastewater Engineering –Dr. B.S.N.Raju	
	6. Water Supply Engineering –B.C. Punmia	
	7. Water Supply Engineering –Hussain	
	8. Water Supply Engineering –Chatterjee	
	9. Environmental Biotechnology-T Srinivas (New Age Publications)	
	10. Environmental Engineering - Peavy, Rowe, Tchenobolus	
	11. Water supply and sanitary engineering - Rangwala	
	Books recommended for Practical:	
	 APHA (American Public Health Association) Handbook,1998 Soil, Plant and Water Analysis -P. C. Jaiswal Chemical and Biological Analysis of Water -Dr. R. K. Trivedy and P. K. 	

г

	Goel. 4. Practical Biochemistry -J. Javraman
EVSUT-125	PRACTICALS RELATED TO EVSC- 121, 122, 123 & 124 (4 Credits)
	EVSUT-121 WATER AND SOIL POLLUTION: MANAGEMENT & MITIGATION
	1. Determination of pH, Turbidity & Electrical Conductivity, Solids (TS, TDS, TSS).
	2. Determination of Total Alkalinity and Total Hardness of water sample.
	3. Determination of Chlorides and Residual Chlorine of water sample.
	4. Determination of DO and BOD of given water sample.
	5. Determination of COD in given water sample.
	6. Determination of Nitrate and nitrites of a water sample.
	7. Determination of Sulfates of given water sample.
	8. Determination of Phosphates of given water sample.
	9. Estimation of oil and grease from a water sample.
	Soil Pollution and Control
	1. Determination of pH & Electrical Conductivity, Solids (TS, TDS, TSS)
	2. Determination of Total Alkalinity and Total Hardness of soil sample.
	3. Determination of Bulk density and water holding capacity of soil of given soil sample.
	4. To estimate organic carbon of soil sample.
	5. To estimate cation exchange capacity of soil.
	6. To determine sodium adsorption ratio of soil.
	7. Texture Analysis of given soil sample.
	8. Estimation of TKN of given soil sample.
	EVSUT – 122 ENVIRONMENTAL POLLUTION II: AIR, NOISE AND RADIATION
	Air Pollution:
	1. Determination SOX concentration in air.
	2. Determination NOX concentration in air.
	3. Determination PM Concentration in air.
	4. Determination of heavy metals in collected air samples.
	5. Estimation of Carbon dioxide from air sample.
	Noise Pollution:
	1. Measurement of sounds by DB meter / SLM in silent, industrial, residential and
	commercial zones.
	2. Determination of SPL, Lmax, TWA, Leq, Ldn, L10, L50, L90.
	3. Determination of Noise dose.
	EVSUI – 123 ENVIRONMENTAL LEGISLATION, ETHICS AND POLICY
	1. Field visits and its legal interpretation – submission of detailed reports

2.	Study of case studies and its interpretations - submission of detailed reports
EVSUT – 124 WATER & WASTE WATER TECHNOLOGY	
1.	Field visit to river/lake for Sampling procedure, handling and preservation of samples
2.	Visit to water treatment plants - Sampling procedure, handling and preservation of
	samples
3.	Visit to wastewater/effluent treatment plants - Sampling procedure, handling and
	preservation of samples
4.	Physico-chemical analysis of waste water to determine quality of sewage and
	effluent
5.	MLSS, SVI study for waste water
6.	Jar test for coagulation determination
